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Abstract—This paper is concerned with a theoretical investigation of transient thermal response of
enclosures when the outdoor temperature follows any arbitrary function. Initially, the response of the
enclosure to a unit step function is derived. The results obtained are used to define a function called
the “Weighting Function”, the characteristics of which depend on the thermal properties and ventila-
tion of the enclosure considered. The response consequent on the arbitrary outdoor temperature
excitation is then obtained by the use of weighting function and convolution integral. Numerical
computations for a few selected cases are carried out, which demonstrate the utility of weighting
functions in the study of thermal behaviour of buildings exposed to wide variations of temperature
and solar radiation.
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NOMENCLATURE
total area of the walls including roof
and floor [m?];
total area of the exposed walls [m?];

areas of the ceiling, floor and walls
facing east and north, etc. [m?];
temperature response of the indoor
air to unit step change of outside
temperature [degC]l;

function of time defining an arbitrary
outdoor temperature variation;
absorptivity of solar radiation;
thermal capacity of the air expressed
in terms of per unit area of the
exposed walls [kcal/m? degCl;
thermal capacity of the internal mass
expressed in terms of per unit
area of the exposed walls [kcal/m?
degC];

temperature at position x in wall at
time ¢ [°C];

inside air temperature [°C];
temperature of internal mass [°C];
sol-air temperature [°C];

outside air temperature [°C];

1309
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P,
¢F(t)’
H(p),

inside surface temperatures of ceiling
and walls facing east, west, etc. [°C];

contribution to the indoor air tem-
perature by the ceiling, and walls
facing east and west, etc. [°C];
inside wall surface heat-transfer co-
efficient [kcal/m2 h degC];

outside wall surface heat-transfer
coefficient [kcal/m2 h degC];
heat-transfer coeflicient at surface of
internal mass [kcal/m? h degC];
thermal diffusivity [m2/h];
thermal  conductivity
degCl;

thickness of the wall [m];
position in wall [m];
variable of integration;
time [h];

intensity of solar radiation [kcal/m?
h];

number of air changes per hour [1/h];
Laplace transform parameter;
weighting function [1/h];

function of the Laplace transform
parameter, p;

[kcal/m h
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8(2), delta function;
H(p), unit function;
Bx, roots of the transcendental equation

occurring in the text, n = 1,2, ... .;
x(Br), function of the roots Sx;
w, angular frequency;
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Yo = kPB/K2R:, n=12,...;
D, = constantsin the text,n =1,2, ....

INTRODUCTION

BUILDINGS in the tropics are exposed to the
influence of large fluctuations of temperature and
solar radiation.* The amplitude and decay rate
of transients in the heat wave transmitted
through the structure are decided by the thermo-
physical properties of the enclosing walls. The
temperature response of the indoor air to these
changes depend not only on the properties of
the enclosing walls but also on the internal
mass and rates of ventilation of the enclosures.
The behaviour of the difterent factors and their
interplay in influencing the room response are
quite complex and it is essential that they are
examined to evolve an optimum design.

In this paper an attempt is made to define a
function ¢x(t) to embody the complex nature of
room response. The function so defined is the
enclosure response to an outdoor impulsive
temperature variation and it is characteristic
of the particular enclosure. It includes the
combined effects of ventilation, internal mass

* In calculating the room response to actual outdoor
climatic variation, the following formula is used for
sol-air temperature which takes account of solar radia-
tion and air temperature.

fsa = 0, + a IR,
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and thermophysical properties of the enclosing
walls.

Since the outdoor variation in temperature is
quite complex, each variation in a small interval
of time can be treated as a step function change
and therefore when multiplied by the corre-
sponding ¢ r(¢) for that interval and summed up
for all times, the required temperature response
of the enclosure is obtained. Because of the very
nature of the derived function, it is called the
“Weighting Function”. The sum of the products
over all values of time can conveniently be repre-
sented by a convolution integral.

Work on the calculation of weighting functions
and the consequent room response has recently
been done by Fujii [1], in which the author
employed an approximate technique to arrive
at the weighting function. In this paper the
weighting function is obtained by an exact
solution of the equations governing the flow of
heat in an enclosure which is influenced by
ventilation and internal mass.

Recently Pratt and Ball [2] have conducted a
theoretical study of transient cooling of heated
enclosures when heat is produced inside the
enclosure at a constant rate and a step function
change occurs in the outside temperature. Since
most of the equations and boundary conditions
are common between the two problems, many
steps in the mathematical development here
have been omitted by simply giving a reference
to their paper as [2]. Only those steps are
retained which are essential to maintain con-
tinuity and clarity of the present analysis.

TEMPERATURE PULSE AND TRANSIENT
ROOM RESPONSE

Let the temperature response of the enclosure
air to a unit step function of temperature be
given by 0;(1r) = Ap(t), then

Ar(t) = f(p) H()
Ht=0 att <0 (1)
H(t) =1 att >0

as shown in Fig. 1. Here f(p) is a function char-
acterized by the room properties, where p can
be identified as the Laplace-transform parameter.
Obviously the Laplace-transform of Ag(f) is

(1/p) f(p)-
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Fic. 1. Unit pulse and characteristic response curve of
indoor air.

If the outside temperature takes a sudden
impulsive change of the form of a delta function
and if the consequent temperature of the indoor
air is given by 6,(t) = ¢r(?), then

¢r(t) = f(p) &1) @

where 8(¢) is the impulsive pulse function defined
as
8t)=0
8(t) = 0

T s(ydr =1,

att #0
att =20

This is shown in Fig. 2. It may also be verified
that

$r0) = 5 Ax(0). ®

Now if the outdoor temperature variation is
defined by an arbitrary function F(¢), then the
temperature of the indoor air may be computed
by the convolution integral

6i(t) — j F(t — &) $r(£) de @

where £ is the variable of integration.

The function ¢#(¢) is called the weighting
function of the enclosure for temperature
variation.
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Fig. 2. Impulsive pulse and characteristic response
curve of indoor air.

Consider an enclosure bounded by walls
whose dimensions (length and breadth) are large
compared to the thickness. The walls are
assumed, for this analysis, homogeneous and
isotropic. The whole enclosure is in a steady
state when the temperatures inside and outside
are assumed same and for convenience taken as
0°C, and as such there is no heat flow through
the walls. Now suppose that the outside air
temperature rises suddenly by 1 degC, the rise
time being infinitesimal. The consequent tran-
sient heat flow through the enclosing wall is
assumed unidirectional and perpendicular to the
wall, the lateral flow being unaccounted for.
The heat which arrives at the interior surfaces is
disposed of in several ways. An appreciable
part is absorbed by the internal mass, a part is
carried away by the ventilating air, and a part
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establishes heat exchange between the internal
surfaces and the internal mass, while the rest
is absorbed by the inside air with a consequent
temperature rise. Heat losses by radiative and
convective processes have not been taken into
account separately,

Let an enclosure, whose bounding walls are
the planes x = 0 and x = L be subjected to a
temperature pulse of the form of a unit step
function. It is assumed that the enclosure
contains internal mass of thermal capacity C;
per unit area of the exposed walls, and is venti-
lated at a rate of m air changes per hour. Further,
the surface heat-transfer coefficient at the
exposed surfaces of the internal mass is taken
as 1/R;, which is often taken as 1/R;. With these
considerations, the equation of one dimensional
heat transmission through the walls and the
boundary conditions are

N. K. D, CHOUDHURY and Z. U, A, WARSI

oo 1

—Kggzj{i(‘)“oi), x=L t>0 (7)
8:&::8,;3:0, t >0 (8)

dé i
Ci—(T;s :E(ﬁz — Ois), t>0 (9

1 1
R @—8)+mCa(l —86)= z (0; — b:s),
x=1L, t>0 (10)
Introducing the non-dimensional variables

__* | =
uHKRi’ -

and writing

L
— o 2 R2
¥Ry T=HkIKER

K2R

stakRS’

a = Ri/Ro

o6 220 in equations (5) to (10), and taking the Laplace-
5= ke 0<x<L >0 (5) transform of the equations, we get after elimina-
tion of 8, §;5 the following expression for the
o8 1 - i
kT -0, x=0, t>0 (6 Laplace-transform (2) of the air temperature
ox Ry ﬁi.
Gy o R; (Ns + p) [2 a \/(P) + mCq Ry ‘/J(P)] (11)
" p {41 (Ns + p) {(p) — 2 Rs (Ns + p) [a sinh +/(p) I + +/(p) cosh v/(p) 1] + Ri p (p)}
where
() = o+ VIl + V(D) eV P! —[a — V(P [1 — V(p)] eV ®? (12)
Ay = Rs + m Ca R Rs (13)
and 6; is the Laplace-transform of 8; defined as
8 = [ Be-v7 dr. (14)
)

To find the air temperature 6;(+), we now employ the Laplace-inversion integral, the method for

which has been detailed in [2]. Thus we have

2Y {a Bn+m Cq Ri[(a — B2)sinBn I+ Bu (1 + o) cos Bnl]} exp (— B2 7)

0i(r) =1 _iRs (Ns —

n=1

where B, are the positive roots of the equation

Bn tan an ==

[mCsRiRs(1+a)+ Ri+ a(Ri+ R By —

7 x (Ba) a5

[ReNsmCagRi -+ Rs No (1 +m Ca Ri)] B2

(Ri + Rs + mCaRi.Rs)}gi hand [amCaRiRs+GRi+ Rst(l ‘i‘mCa,Rz)]ﬂi +amNsCaR¢RS

(16)
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and
x (Bn) = (Ri + Rs + m Cq R; Rs) [(@ — B2) sin Bn I 4 Bn (1 + a) cos fn 1]

+ [(Rs + m Cq R; Rs) (Ns — 82) — R 82] {[1 4+ /2 + alf2])sin Byl

1By al+a+1
*(_2“" 2B,

)cosﬁn }—Rs(asinﬁnl+ﬁn cos Bnl)

— Rs(Ns — B2) [ sin By, 1 (%;—71) cos Bn l] )

RESPONSE DUE TO AN IMPULSIVE PULSE
From equations (3) and (15) the temperature response due to an impulsive pulse or the
weighting function ¢r(z) is

br() = > 8 exp (— 1) 18)
where =

k
K2 R2

and S, x(Bn) are as given in equations (16), (17).

For numerical computation of weighting functions for different values of the parameters,
the transcendental equation is solved and the values of i, Bs, etc., obtained. It was found that
except for small values of time, the roots higher than the second do not significantly contribute
to the computed results. At time ¢ =0, the results are likely to be in error, but the series
(18) may be approximated as shown below. Assuming that B3 > B2 and Bs > Bs, etc., we
take the limit of terms following n == 2 for large B, in (18) and get

B, = Rs (Ns — B3) {a Bn + m Ca R; [(0 — B2) sin Bn I + Bn (1 + o) cos B 11} (19)

¢F( ) (,3 ) exp( klgl t/k2 R2) + (B ) eXp( kﬁz l‘/k2 R2) —

2

IK2RE @ + m Ca R

From (20) it is seen that for ¢ > 0 the contribution of the terms under the summation is very

)
insignificant but at ¢ = 0 it is very large since the series — > B, tan 8,/ is divergent. The summa-

n=3
tion is therefore approximated by the Delta Function as
B ! B
¢ﬂ0:§éjuﬂ—k%ﬁﬂR@+ﬁ£rmﬂ—k@ﬁmR9+Eﬁm @1

where
2kmCq
[K2R;(24+ mCqaRy)’

It is interesting to note that the coefficient of 3(t) depends on the ventilation and thermal
capacity of the air, and also on the physical properties of the wall material. This may be

E1 =
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identified as the instantaneous heat which enters the enclosure following an impulsive change of
the outdoor air temperature. The weighting function may be written in its final form as

k
$r() = gz g Drexp (= y1.) + Daexp (— y2 1) + E5(0)] 22)
where
D, — Rs (Ns — B3) {aBn + m Co Ry [(a — B3)sinBn I + Bu (1 4 @) cos By I]}
* x(Bv)
n=12,...(23)
kB k B2 4 thickness is considered as contributory to the
V1= RE’ Y2 =5 R (4 internal mass. In a large house, the full thickness
of interior walls is considered as effective internal
E— 2 Ri m Ca . 25 mass
T I12+mCuR)’ @25 "

Weighting functions of a few enclosures having
typical wall constructions are shown in Figs. 3-7.

CHARACTERISTIC WEIGHTING FUNCTION
OF ENCLOSURES

The theoretical results derived are applied
to the computation of weighting functions of
two types of structures, one having a massive
construction and the other a light construction.
In order to study the influence of enclosure-size
on weighting functions, a small room and a
large house are considered. The small room may
be like one of those in the Institute’s Field
Project built up especially for studies on the
thermal response of rooms of various con-
structions. It may also be an apartment inside
a building. The large house visualized may be
a complete building containing many small
rooms.

Weighting function is influenced by internal
mass and the rates of ventilation. Their influence
is studied in a generalized manner as given in
Tables 1 and 2. Because of its definition, the
value of C, is dependent on the ratio, vol/exposed
wall area of the enclosure. For instance in code I,
Table 1, the value of Cy =05 X 0:3 =015
(thermal capacity of air = 0-3 kcal/m3 degC).

Unexposed internal walls, furnishing and
commodities form the internal mass. As no exact
value can be prescribed for the internal mass due
to furnishing, etc., only arbitrary values are given
in Tables 1 and 2. Nevertheless, for internal walls
shared by neighbouring rooms only half the

Heat flow through floors particularly those on
raised plinths is quite complex. Experimental
observation in the Test Houses indicate that
they maintain temperatures close to those of
indoor air. The floor has therefore been left out
of consideration.

Computation of the roots and constants
have been carried out [Table 3] for the very
generalized cases in Tables 1 and 2. Only
the first two roots are included as the contribu-
tion of the higher order roots is insignificant.
The computed weighting functions are plotted
for different hours in Figs. 3-7.

Transient response of various types of
enclosures to impulsive variations in outdoor
air-temperature are manifest in their character-
istic weighting function. Figure 3 shows the
influence of ventilation and internal mass on the
characteristic weighting functions of a small
room enclosed by heavy masonry walls. In
general, the room responds very slowly to a
sharp variation in outside temperature. When
the room is empty, the rate of temperature rise
of the indoor air attains a peak, although small,
after about four hours of the outside variation.
Ventilation of the room causes the peak to occur
earlier and also enhances the subsequent cooling
of the room. Addition of internal mass sup-
presses the peak considerably but prolongs the
rate of cooling. Influence of ventilation on rooms
with internal mass is more pronounced than
without it. Further increase in internal mass
seems to alter the pattern of functions. This may
be ascribed to errors involved in computation
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Table 1. Heavy striicture. Table of data used for computation of weighting functions

Brick Enclosure Code Vol/Exposed Ca m Ci
Enclosure Type No. wall area kcal/m? °C 1/hr kcal/m? °C
L=20cm 1 05 0-15 1 0, 20
K = 0-87 kcal/m hr °C Small 2 05 0-15 6 0, 20, 68
k=24 x 10~ m?*hr Room 3b 10 03 1 20
R; = R, = 1/6 m*hr°C/kcal 4c 1-0 03 6 68
Ry, = 1/20 m*hr°C/kcal 5c 1-0 03 20 68
Thermal capacity of air = 0-3 6 1-5 0-45 1 0
kcal/m? °C Large
Specific heat of brick = 0-2 House 7 15 045 6 20
kcal/kg °C
Density = 1770 kg/m? 8 2:0 06 1 68
9 20 06 20 68

Notes: a, b, ¢ denote respectively, zero, moderate and high internal mass.

Codes 1 and 2 refer to a small room all the six faces of which are exposed (upper storey). The internal mass
postulated is in the form of furnishing.

Codes 3b, 4c and 5c refer to a small room, whose three faces are exposed. The value of effective internal mass
is decided by unexposed faces and furnishing. Codes 6, 7 refer to a large house whose all faces are exposed
(upper storey), the internal mass being in the form of furnishing. Codes 8, 9 refer to a large house of which
five faces are exposed. Interior walls and furnishing are considered as internal mass.

Table 2. Light weight structure. Table of data used for computation of weighting functions

Enclosure of Enclosure Code Vol/Exposed Ca m Ci
wood type No. wall area kcal/m? °C 1/hr kcal/m? °C
L=25cm 11a 05 015 1 0
K = 0-11 kcal/m hr °C 11b 05 015 1 3
k=11 x 10-3 m?/hr Room 12a 05 015 6 0
Ri= R, = 1/6 m*hr °C/kcal Small 13b 10 03 1 3
Ry = 1/20 m?hr °C/kcal 14b 1-0 03 6 3
Specific heat of wood = 04 15a 15 0-45 1 0
kcal/kg °C Large 16 15 0-45 6 0,10
Density — 250 kg/m® House 17¢ 20 06 1 10
18¢ 2-0 06 20 10

Notes: a, b, ¢ denote respectively, zero, moderate and high internal mass.

Codes 11a, 11b, 12a refer to a small room, all the six faces of which are exposed (upper storey). The internal
mass postulated is in the form of furnishing.

Codes 13b, 14b refer to a small room, whose three faces are exposed. The value of effective internal mass is
decided by unexposed faces and furnishing.

Codes 15a and 16 refer to a large house whose all faces are exposed (upper storey). The internal mass is in the
form of furnishing.

Codes 8 and 9 refer to a large house of which four faces are exposed. Interior walls and furnishing are con-
sidered as internal mass.
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Table 3. Values of the computed coefficients and roots for the different cases considered under Tables 1 and 2

Reference Heavy structure (/ = 1:38) Reference Light structure (/ = 1-38)
to Code to Code
No. in Root Root Coefficient Coefficient No. in Root  Root Coefficient Coeflicient
Tables1 &2 B, B. D, D, Tables1 &2 8, B, D, D,
1(a) 096 2:85 1-065 —2-800 11(a) 097 2:95 -i-0-940 -2313
1(b) 079 1-43 0-578 —0-233 11(b) 042 1-20 -+0-142 +0-378
2(a) 1-025 295 1-038 —2-146 12(2) 1-025 296 -+1-038 —2146
2b) 0-81 1-43 0-593 —0-220 13(b) 0-428 1-23 --0-148 +0-387
2(c) 0-54 125 0-176 0-293 14(b) 0-48 1-25 +0-168 -~0-39
3(b) 0735 142 0-068 --0-059 15(a) 102 292 <-1-009 —2:07
4(c) 0-555 1-25 0212 0310 16(a) 1-119 2:97 --()-886 —1-568
5(c) 0-655 i-28 0213 --0-276 16(c) 0-48 1-23 —0-020 = 0-430
6(a) 1-:02 2-95 1-009 —2-:074 17(c) 0-49 1-21 —(-073 +0-454
7(b) 0942 {-44 0-617 —0-189 18(c) 044 1-25 —0-10 0349
8(c) 051 124 0163 --0:304
9c) 0744 1-28 0213 --0-276
008 004 -
‘ !
! ‘ ! | ca=03 N
007 - H— i
| 3p-mal, €220
e 008 003 35 94o7m=6, (258
= £ i5c-m=20, C =53
§ oos - <
5 i 2
2 0-04 E‘ 002 o e s g
2 o
;4_5; 003" - 7;‘; S H -
z 3 :
Q-02 - o0l -
0 0l L : o
| !
o - 2 3‘ 5 0 20 30 50 00 <] 2 3 5 0 213 30 50 100

Time, h

Frc. 3. Weighting functions of a small room of heavy
weight construction, Cy = 0-15.

of the functions during small hours when the
roots greater than the second play significant
role. Figure 4 exhibits the characteristics when
the room contains three unexposed walls and
internal mass. The response is delayed and the
rate of temperature rise is lowered [cf. 1(5) and
3(p)]. This shows that reduced number of
exposed walls of a room will lower temperature
rise. Additional furnishing causes further lower-
ing of the rate of temperature rise.

The pattern of the characteristic functions

Time, h
F1G. 4. Weighting functions of a small room of heavy
weight construction, Cy = 0-3.

(Fig. 5) for a house having large ratio of cubic
volume and wall area is more or less the same
as in a small room. When the houses have only
air infiltration {m = 1) the rate of temperature
rise in a small house is slightly greater {1(a), 6(a)].
With increase in ventilation (m = 6), the rate
of rise in a large house is greater initially, but
finally it is lower than in a small house [2(5), 7(b)].
Thus the ventilation of a larger house enhances
the cooling rate.

Response of a light weight structure to a
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007
6o-m=l, (=0
7b-m=6, C;= 20
C,=06
8c-m=l, C;=68
9¢-m=20, C;:= 68

0-06

0-03

Waighting function [/h

004
8¢
003 . -
i i
! f ;
002 I— AN +
l P
001 fr i e ]
: 2 l 1 A
o 2 3 5 10 20 30 50 100

Time, h

Fic. 5. Weighting functions of a large house of heavy
weight construction, Cy = 0-45,

sudden variation in outdoor temperature is
shown in Fig. 6 and 7. An empty enclosure with
wooden walls transmits heat indoors almost
instantaneously and the inside femperature
changes fast. The peak rate of temperature rise
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is about thirty times compared to a similar
enclosure having brick walls [cf. 1(a), 11(a), and
6(a), 15(a)]. The influence of ventilation in small
and large houses is similar to that in the heavy
structure. Addition of internal mass reduces the
rate of temperature rise by absorbing the heat
that penetrates the thin walls but its performance
does not approach that of a masonry structure.

RESPONSE TO PERIODIC VARIATION OF
AIR TEMPERATURE
Weighting functions thus computed can be
used to determine the response of an enclosure
to any periodic change in outdoor air temperature
with the help of the convolution integral. If the
temperature variation of the outdoor air follows
a function F(1), then the corresponding enclosure
response is given by equation (4). In particular
for periodic variation given by
F(t) = Fy + Ficos(wt — ¢ (26)
where Fy and Fi are constants, and « the fre-
quency, the response of the enclosure is

20—

Weighting function |/h
S

08 F- o

o 4 V2
Time,

374 t o]
h

FiG. 6. Weighting functions of a small room of light weight construction, Cp == 0-15.
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D1 y1
¥+ w?

Ds ya 1 Dy .
+ - BT o )Flcos(wt— ) + (y§+ w2+j)§+ wz) F1 w sin (wt — ¢€)
© . 1 1
-+ (—2 sin € — — cos e) exp(—y11)+ (- sin € ——cos €) exp (— ys t)} 27
N 1 e
If the enclosure is subjected to this periodic variation for a long time, then the effects of
transients vanish, and we have
D1 Dz D Dz y2
0:(t) = K2 I [(3’—1- + y—z + E) Fo + (y T + = BT wz) Ficos (wt — ¢
D D2 .
+(y§—1—w2+y T --)wFlsln(wt-—e)]. (28)

RESPONSE TO SOLAR RADIATION

Weighting functions obtained above are for
an enclosure subjected to the influence of
variations in air temperature only. The response
consequent on variations in the incident solar
radiation can be computed through sol-air
temperature and the same weighting functions
provided the enclosure has restricted or no
ventilation. This is because the step function in
the equilibrium equation (10) represents a
sudden change in the outdoor air temperature.
If the concept of sol-air temperature is extended
to represent this function, the heat transfer by

C,=0-45
i50—-m=1, =0
\6g—m=6, C=0
16c—m=6, C,=10

C,= 06
[Te=m=i, € =10
18c—m=20, =10

n
(o]
T

[l

\W_

o] 174 172 3/4 |
Time, h
F1G. 7. Weighting functions of a large house of light
weight construction, C, = 0-45 and 0-6.

o
®

Weighting function 1/h
©

o
IS

ventilation in equation (10) would be exceedingly
high unless the rate of ventilation m is small or
the difference between sol-air temperature and
air temperature is negligible. It may be observed
from equations (16), (17) and (19) that the
contribution on weighting function of the
ventilation term for small values of m is small
compared to other terms.

ROOM RESPONSE TO PERIODIC VARIATION OF
OUTDOOR TEMPERATURE AND SOLAR
RADIATION

It will be apparent from the discussion and
derivation of the weighting functions that the
final room response given by equation (28) due
to a periodic variation of outside air temperature
holds only for a homogeneous room. All the
exposed walls of this room are composed of the
same material and have the same excitation.
But in actual practice, walls of the room may be
of different material composition, for instance
the roof may be of cement concrete and walls of
brick. The temperature excitations for the,
exposed walls are also different because of
different intensities of solar radiation incident
on them. The room response of composite
construction and having different exposures
can be deduced on the basis of the equilibrium
conditions. The amount of heat transfer from
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the interior surfaces to the indoor air may be
obtained by multiplying the difference of surface
and air temperatures by their respective wall
surface heat-transfer coefficients. The wusual
process is to take an over-all surface heat-trans-
fer coefficient or surface conductance which
takes into account the convective as well as the
radiative heat transfer. The conductance values
for horizontal and vertical surfaces are different
and also depend on temperatures of the surfaces.
Nevertheless, to simplify calculations, surface
conductances are taken as constant and same
for all surfaces. The simplified equilibrium
equation is thus given by

1
E{ANBN 4+ Asbs + Awbw -+ A0 + Acbc

+ App — A 0]+ m Ay Co (B — ;) =0
(29)

where 8¢, 9z, etc., are the inside surface tempera-
tures of the ceiling, east wall, etc., 6, is the out-
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door air temperature, A’s are the respective
areas and A, is the total exposed area.

In order to calculate the inside air tempera-
ture of a composite enclosure from equation
(29) it is necessary to determine the inside sur-
face temperatures of the exposed walls. The
contribution of each surface to the indoor air is
considered separately. Treating the unexposed
walls as internal mass, the temperatures of the
inside surfaces are given by the following
equations

bc = (1 + m Cq R;) b;c — m Cq Ry 69
0 =(1 +mCq Ry) g — m Cq R; 6

N )]
where 8;¢, 8;g, etc., are the contributions to the
indoor air temperature by the ceiling and wall
facing east, etc. These are determined from their
respective weighting functions and sol-air

temperatures.
Response of an enclosure subjected to changes

Table 4. Field test room specifications and sol-air temperature

Roots and coefficients of weighting functions

Sol-air tempera-

Surface Composition ture
B B D, D, °C for the surface
Horizontal roof 17-8 cm thick cement concrete
3-46 x 2-88m K = 1-54 keal/m?hr°C
k = 0-0031 m¥hr 1-15 258 1957 —3:343 36:97-18-3 cos
1/R; = 7-32 kecal/m?hr°C (0:262¢-0-265)
1/R, = 17-08 kcal/m?hr°C
1= 085
East wall 254 c¢m thick brick h 342-11-35cos
346 x 322m K = 0-564 kcal/m*hr°C (0-262-0-19)
k = 0-0015 m?*hr
1/Ry, 1/R,, same as for the
roof
I =33 L 039 1-082 0-200 —0-398
South wall ditto 32-08-10-2 cos
322 x 2-88m 0-2621-0-57)
‘West wall ditto 33-67-11-Scos
348 x 322m J (0-262¢-0-82)
North wall ditto Unexposed — —_ — —
322 X 2-88m
Floor Cement floor on 50 cm high - — — —_— —
346 x 2-88m plinth

Notes: North wall of the test room is unexposed and shared by the anteroom, half of its thickness is taken as internal
mass, Cy == 8 kcal/m? °C. Heat flow through the floor not taken into account.

The enclosure considered is unventilated (m = Q).
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of air temperature and solar radiation may be
computed as follows:

(a) When the enclosure is unventilated, sol-air
temperature will represent the function
E(t) in (26). The solution so obtained will
be exact.

(b) When the enclosure has restricted ventila-
tion, that is when m is small, the function
FE(t) may again be considered as the sol-air
temperature. This will introduce error,
although not of a significant magnitude,
in the ultimate response. This condition
is realized during the periods of intense
summer sun, when the houses in Northern
India are usually shut out to preserve
coolth.

(¢) For an enclosure having high rates of
ventilation approximate results may be
obtained by first calculating the contribu-
tion f;¢, etc., of each wall to the room air
temperature under the conditions men-
tioned in (a). The results so obtained are
then used to find the inside surface
temperatures f¢, etc., through the formulae
(30) with m 5= 0. Surface temperatures
are then substituted in equation (29) to
determine the inside room temperature 6;.

Response of an unventilated room (m = 0)
subjected to intense solar radiation and air
temperature (in shade) as availing during summer
in North India has been evaluated. This is one
of the test rooms constructed in the field for
studies on thermal response and indoor climate
of buildings. The rooms are erected 12 metres
apart to have unobstructed temperature, solar
and air exposure. Entrance to each test room
is through a small door on the north partition
wall and a 1-2 m wide anteroom which serves to
check air infiltration. Round the clock observa-
tions on the indoor temperature response of the
room subjected to the sol-air temperatures in
Table 4 were taken on two typical summer days
by means of remote reading thermocouples.

The temperature response of the indoor air
computed by the method of weighting functions
is given in Fig. 8. The predicted temperatures
agree, in general, with the measured values.
Nevertheless, there is a prominent divergence
during the early hours of the experiment, viz.
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Fi1G. 8. Thermal response of Field Test House—Com-
puted and experimental curves.

12 midnight to 10 a.m. The disagreement
gradually reduces with the progress of the experi-
ment and vanishes after about 10 a.m. Several
factors contribute to this difference between the
experimental and the predicted values. The
primary cause is attributed to the inside thermal
condition of the room which is much different
from the condition postulated in the theory at
time ¢ = 0. The theory requires that the room
is subjected to the same sol-air temperature
long before the commencement of the experi-
ment. But actually the room was having some
ventilation and was not exposed to the same
temperature cycle as in Table 4, prior to the
start of the experiment. Secondly, the heat flow
through the floor which is not insignificant has
not been taken in calculations. Lastly, the
radiative and convective exchange inside the
room have been considered only partly through
the overall inside surface heat-transfer coefficient
1/R; and some error may also be caused by this
approximation.
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TRANSIENT THERMAL RESPONSE OF BUILDINGS—PART I

Résumé—Cet article a pour objet une étude théorique de la réponse thermique transitoire d’enceintes
quand la température extérieure suit une loi arbitraire quelconque. Initialement, la réponse de I’enceinte
a une fonction échelon-unité est obtenue. Les résultats obtenus sont utilisés pour définir une fonction
appelée la “fonctio de pondération”, dont les caractéristiques dépendent des propriétés thermiques et de
la ventilation de I’enceinte considérée. La réponse a P’excitation de température extérieure arbitraire
est alors obtenue 4 l'aide de la fonction de pondération et d’une intégrale de convolution. Des calculs
numériques pour quelques cas choisis ont été conduits, qui dépontrent 'utilité des fonctions de pon-
dération dans I'étude du comportement thermique de batiments exposés a de grandes variations de
température et d’ensoleillement.

Zusammenfassung—In einer theoretischen Untersuchung wird das instationidre thermische Verhalten
von Riumen behandelt fiir Anderungen der Aussentemperatur nach einer beliebigen Funktion.
Zuerst wird das Verhalten der Raume fiir eine Einheitsschrittfunktion abgeleitet. Mit diesen Ergeb-
nissen ldsst sich eine Funktion definieren, die ‘“Gewichtsfunktion” genannt wird. Sie ist durch die
thermischen Eigenschaften und die Beliiftung des betrachteten Raumes charakterisiert. Das Verhalten
entsprechend der willkiirlichen Aussentemperatur wird mit Hilfe der Gewichtsfunktion und eines
Faltintegrals ermittelt. Numerische Rechnungen sind fiir einige ausgewéhlte Fille durchgefiihrt. Sie
zeigen die Niitzlichkeit der Gewichtsfunktionen fiir die Untersuchung des thermischen Verhaltens
von Gebiuden, die einem grossen Variationsbereich der Temperatur und der Sonnenstrahling ausgesetzt
sind.

AHHoTanMA— JaHIIasd CTaThsl IOCBAIIEHA TEOPETUYeCKNM MCCIeLOBAHMAM HeCTAUOHAPHON
TeINIOBOIl pearkuuN OrpasKmeHuit, KOrja TemMiuepaTypa OKpy:Hawilell cpeihl ONMCHIBAETCA IO
NMPOU3BOJILHOMY 3aKOHY. I3Hayalle OmpefeifAeTcA PeaKUUs OTPAKICHHUA B BHAe eMHAYHON
¢yurnun. [TomydeHHBIE Pe3yIBTATH HCHOIL3YIOTCH A ONpefeseHusa QyHKIMN, HasHBaeMoli
«BeCOBOM QyHKuMell», XAPAKTEPHCTHKYE KOTOPOI 3aBUCAT OT TemIoPU3MYeCKHX CBOHCTB M
BEHTHJANUN PACCMATPHBAEMOT0 orpasmeHus. Torga peakiusa Ha NPOM3BOJbHOE M3MEHEHUE
TeMIIEPATYPHl OKpPYKaowleil Cpefbl OIpPeNesAeTcA IYTEM MCHOJIb30BAHUA BeCOBON (yHKIUM
I MHTerpaja co cBepTHOli. BHIOIHEHH 4YHMCIeHHBIE PACYETH JJIA HECKOJIbLKUX CJYy4YaeB,
JeMOHCTpUPYIOIMe NIPUMEHUMOCTh BECOBHIX (YHKIMII IpPH U3YUEHHN TEIUIOBOTO IOBEJEeHNA
fOOPYHEHNIT, IIOJIBEPHKEHNBIX JeHCTBHIO COTHEUHONH pajuaii U TeMIIepaTyp, U3MEHAIIUXCH
B LINPOKOM MHTEpBAJIe.
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